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Introduction



Goalfor this Talk

The chargeof agenciesuchasthe CDC includesthe following:
I Conductsurveillancento epidemiologidssues
I e.g.,develop/implementstatistical modelsto better estimate
and/or predict trendsin the data
I Disseminateinformation (e.g., data) for public use

I e.g., publishingarticles/reports, releasedata via CDC
WONDER

I Must be cognizantof potential risks of disclosurewhensharing
information basedon con dential/private data

The goalfor this talk will be to developa statistical framework
which is usefulfor both of thesecharges.



Today's Example:Stroke Mortality

Backgroundinformation on stroke mortality:
I Strokeis the fourth leadingcauseof deathin the US
I Mortality ratesincreaseexponentiallywith age

I Previouswork hasidenti ed strong spatial patternsin stroke
mortality (e.g., \the strokebelt")

Our data consistsof the numberof stroke deaths, Yiy , and the
populationsize, nj , from:

I i =1;:::;Ns=3,099 counties(or county equivalents)from
the contiguousUnited States
I t=1;:::;N;=41 yearsof data (1973{ 2013)

I US citizensages65 and older.

Becausestroke mortality is quite rare, manyof our Ns  Ng Nt
= 381,177countsare quite small.



Data DisseminatiorChallenges

Whenreleasingthesedata for public use, CDC WONDER uses
NCHS'srecommendatiorof suppressingnstanceswhereYi < 10

I Leadsto nearly 70% of the data analyzedherebeing
suppressed.

This hasan impact on the typesand quality of inferencethat
outsideresearchersan conduct usingthe public-usedata.

I Analyzingall 380,000+ observationsvould requirecensored
data methods(or otherwiseaccountingfor the missingness)
| this is likely an unreasonablexpectation.

I Othersmay restrict their analysedo countiesin which
completedata are available(i.e., urban centers),or aggregate
spatially or acrossageto obtain larger counts.

I Analysedfor more speci ¢ demographiayroupsare left
unstudied(e.g., mortality ratesby age/race/sex),asthe issue
will only be compounded.



Our Proposal

To obtain more reliableestimatesfrom the data and to provide
unrestrictedaccesgo high-quality public-usedata, we proposethe
following:

1. Analyzethe data usinga Bayesianstatistical modelwhich
accountsfor (a) spatial structure, (b) temporalstructure, and
(c) between-age-grougtructure

I To do so, we will usethe multivariate space-timeconditional
autoregressivéMSTCAR) modelof Quick et al. (2017).

2. Usingthe posteriordistribution from the Bayesianmodel, we
will generatemultiply-imputed synthetic data to replace
sensitivecounts

I The resulting synthetic data will preservethe complexspatial,
temporal, and between-agelependenciegalong with any
covariaterelationships)that we accountedfor in our model.


http://onlinelibrary.wiley.com/doi/10.1111/rssc.12215/full
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Diseasanapping| the univariatecase

Followingthe conventionset forth by Besaget al. (1991), we may
assume
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where

l xi];t denotesa regressiorwherexis; denotesa vector of
county-levelcovariates

I For this analysis,our covariatesinclude % non-white and %
male within eachagegroup at eachtime period

I Zike denotesa spatiotemporalrandome ect
I k2 denotesthe varianceof the log mortality rates



Conditionalautoregressiv€CAR) models
To inducespatial correlationin the randome ects, Besaget al.

(1991) assumed
0 1

X
Zic i Zoys & Norm@  Zyo=mi; Z=m;A
P

.

. (Ns 1)=2 Z (D W)Zy
Zwi & | & exp « 5 2
kt

where

elementremoved.
I j i denotesthat countiesi andj are neighbors.
I W is an adjacencymatrix with w; =1 if j i andw; =0
otherwise
Lmi= W, the numberof neighbors
I D is a diagonalmatrix with elementsm;

I ﬁt is an age/time-speci c varianceparameter.



Extensionto multiple diseasenapping

When modelingdata from multiple diseasegor in our case,
mortality ratesfor multiple agegroupsovertime), a multivariate
extensionof the CAR modelcan be used(e.qg., the multivariate
CAR (MCAR) of Gelfandand Vounatsou,2003).
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where

I ZisaNsNgN; 1 vectorof spatiotemporalrandome ects
which allowsfor correlationbetweenagegroups

| 2 is the multivariate analogof 2 from the univariatecase



Multivariate space-timanodelfor Z

Basedon the MCAR of Gelfandand Vounatsou(2003),
0 1
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I Spatial associationsare accountedfor via the neighborhood
structurein the meanand variance.

I Thus, 2z canbethought of asa (scaled)covariancematrix
which accountsfor the multivariate and temporal
dependenciem Z.

1 We'll allow for di ering degreesof temporal correlauonwnhm

each eachage-bracketdenotedby = 1;::1; \,
I Betweenage-bracketdependenciewill be aIIowedto vary over
time, denotedby G= fGy;:::; Gy, 0.

We denotethis structureby Z MSTCAR(G; ).



Hierarchicaimodel
Putting thesepiecestogether, our full hierarchicalmodelis as

follows:
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where = 100N n, and X isthe (NsNgN;  p) matrix of
covariates.

We t this modelusingMarkov chain Monte Carlo(MCMC) and
obtain sampledrom the posteriordistribution for eachmodel
parameter.

I e.g., i(lft);:::; i%), whereL is the numberof iterations



Syntheticdata

Givenour sampledfor i, we can generatesynthetic countsfor
our suppressedx; from a truncated Poissonof the form

S Sooon 0
Y, i QifYie < 109 Pois my {1 v, )< 10

If desired,this approachcould be modi ed to preserveaggregate
totals (e.qg., state-levelcounts) which would be publicly available.

To assesshe quality of thesesyntheticdata, we will comparethem
to syntheticdata that could be generatedby tting the MSTCAR
modelto the publicly available(i.e., suppresseddata.

I Countsbelow 10 will be imputed as part of the model

I We considerthis to be the bestavailablealternativefor both
public usersand for ill-intentioned users(or \intruders")



Measuringdisclosureisk and utility

I Disclosurerisk will be computedas
Pt =VYiY; Y =y) fory=0;1;:::;9:
In particular, we will look at the risk wheny = 1 (the value

we're most concernedabout).
I Utility will be comparedby tting a modelof the form

Yike  Pois(nik exp[ okt + rurakk 1ktl);

whereruraly; denotesa 0/1 variabletaking valuel if countyi
hasa population (acrossall age groups)lessthan 50,000
during yeart.
I Estimatesfrom synthetic data will alsobe comparedto the
estimatesfrom the con dential data (i.e., the \truth").
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Strokemortality: ages65{74

1973

Deaths per 100,000

Below 283
283-314
314 - 346
346 - 387
387 - 463
Over 463
Insuff.



Overalldeclinesn stroke mortality

(c) Ages85+



How muchof thesedata are suppressetb the public?

179 219 319 49 59 6/9 79 89
Proportion of Data Suppressed



Example:1986 in Montour County, PA

(a) Ages65{74 (b) Ages75{84 (c) Ages85+

Data since 1989 is suppressedn CDC Wonder, but data prior to 1989is
unsuppressednd publicly available.



Disclosureaisk

@ P(Yik =0]Yie = 0) (b) P(Yie =1]Yie = 1) (¢) P(Yie =9 Yie = 9)

I Redand greenlinesdenotethe expectedrisk probabilitiesat
the beginningand end of the study, respectively.
I Theserisk probabilitiesare highestat the boundaryvalues.
1 If Yye = 0, thereis no one'sprivacyto be concernedabout.
I We setthe upperboundto someconservativevalue.

I Interior valuesare essentiallywhat we would \expect”



DisclosureRiskand Utility

(@ P(Yie =1Yie = 1) (b) Ages75{84
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Summary

Recallthat the goal of this talk wasto developa statistical
frameworkwhich is usefulfor both public health surveillanceand
the disseminatiorof information, therebyavoidinga redundancyof
tasks. Thus, we claim:
I The MSTCAR is well-suitedfor conductingpublic health
surveillance.
I The posteriordistribution yieldsinferenceon rates, aggregates
of rates, rate ratios, declinesetc.
I The MSTCAR showspromisefor generatingsyntheticdata for
public-use
I Usingthe MSTCAR shouldyield synthetic data with very high
utility

I That said, it is not without its weaknesses



Limitations/ Future Work

I No clearconnection(yet) betweenthis approachand a form
of di erential privacy

I We seesomesimilaritiesbetweenour frameworkand that used
for OnTheMap (Machanavajjhaleet al., 2008), but the
guestionis how to expresghe \informativeness" of our model.

I Not practical for BIG exampleswithout BIG assumptions

I A similar analysiswith Ng = 24 age/race/sexsubgroupsakes

2+ weeksto run
I Aspectsof utility unclear

I e.g.,weassumegbut haven't proven)that by accountingfor
spatial structure, we will preserverelationshipsfor
spatially-structuredcovariatesnot includedin the model

Our vision: For this approachto ultimately be usedfor a seriesof
one-o s rather than to generatea \Synthetic CDC WONDER"

I e.g.,CDCresearcherstudy trendsin stroke mortality, publish
their researchand makethe synthetic data availablefor
further analysisby outsideresearchers



Questions?

hsg23@drexel.edu
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